
Control Systems : Set 4 : PID (3) - Solutions
Prob 1 | A simple mechanical system is shown in the figure below. The parameters are k = spring constant,

b = viscous friction constant and m = mass. A step of 2 Newtons force is applied and the re-
sulting step response is shown below. What are the values of the system parameters k , b, and
m?
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(b) Step response for Problem 3.33

Solution: The equation of motion is

m!x+ b _x+ kx = F:

The transfer function is

X(s)

F (s)
= G(s) =

1
m

s2 + b
ms+

k
m

:
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33. A simple mechanical system is shown in Fig. 3.58 (a). The parameters are

k = spring constant, b = viscous friction constant, m = mass. A step of 2
Newtons force is applied as f = 2! 1(t) and the resulting step response
is shown in Fig. 3.58 (b). What are the values of the system parameters

k, b, and m?

Figure 3.58: (a) Mechanical system for Problem 3.33
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The equation of motion for this system is

mẍ + bẋ + kx = F

which gives the transfer function

X

F
= G(s) =

1
m

s2 + b
m s +

k
m

From the plot, we can estimate a number of properties:

DC gain 2G(0) = 0.1 → G(0) = 0.05

Overshoot x(Tp)− x(∞)
x(∞) =

0.113− 0.1
0.1

= 13% → ζ = 0.54

Peak time Tp = 2 → ωn = 1.87

We can now solve for the system parameters

G(0) = 0.05 =
1

k
→ k = 20

ω2n = 3.4969 =
k

m
= → m = 5.72

2ζωn = 2.0196 =
b

m
→ b = 11.55



Prob 2 | Consider the automobile speed control system depicted in the figure below.

R(s) Hr kp
A

s + a

B

s + a

W

Y (s)

Hy

R = Desired speed
Y = Actual speed
W = Road grade %

a) Find the transfer functions from W (s) and from R(s) to Y (s).

Start at Y and work backwards

Y =
B

s + a
W +

kpA

s + a
(HrR −HyY )

(s + a)Y = BW + kpAHrR − kpAHyY
(s + a + kpAHy )Y = BW + kpAHrR

Y =
B

s + (a + kpAHy )
W +

kpAHr
s + (a + kpAHy )

R

So we see that the transfer functions are

Y

W
=

B

s + (a + kpAHy )

Y

R
=

kpAHr
s + (a + kpAHy )

b) Assume that the desired speed is a constant reference ro , so that R(s) = ro/s. Assume that
the road is level, so w(t) = 0. Compute values of the feedforward gain Hr to guarantee
that

lim
t→∞
y(t) = ro

Consider two cases

(i) Hy = 0. This is an open-loop feed-forward controller, as there is no feedback.
(ii) Hy ̸= 0. This is now a closed-loop feedback controller.

The speed is

Y =
kpAHr

s + (a + kpAHy )
R =

kpAHr
s + (a + kpAHy )

ro
s



We use the Final Value Theorem to compute the steady-state output

yss = lim
t→∞
y(t) = lim

s→0
sY (s) = lim

s→0
s

kpAHr
s + (a + kpAHy )

ro
s

= lim
s→0

kpAHr
s + (a + kpAHy )

ro

=
kpAHr
a + kpAHy

ro

(i) Case Hy = 0

yss =
kpAHr
a
ro

Therefore in order for yss to equal ro , we must choose Hr = a
Akp

.
(ii) Case Hy ̸= 0

yss =
kpAHr
a + kpAHy

ro

Therefore in order for yss to equal ro , we must choose Hr = a+kpAHy
kpA

.

c) Now assume that a constant grade disturbance W (s) = wo/s is present in addition to
the reference input. Find the variation in speed Y due to the grade change for both the
feed-forward and feedback cases, using the values for Hr computed in part (b). Use your
results to explain (i) why feedback control is necessary and (ii) how the gain kp should be
chosen to reduce steady-state error.

From (a) we see that the output will be

Y =
B

s + (a + kpAHy )

wo
s
+

kpAHr
s + (a + kpAHy )

ro
s

Applying the Final Value Theorem, we get

yss = lim
s→0

B

s + (a + kpAHy )
wo +

kpAHr
s + (a + kpAHy )

ro

=
B

a + kpAHy
wo +

kpAHr
a + kpAHy

ro

(i) Case Hy = 0 and Hr = a
Akp

.

yss =
B

a + kpAHy
wo +

kpAHr
a + kpAHy

ro

=
B

a
wo + ro



We see that the variation in yss is B
a

. This value is completely unaffected by the
feedforward term, and therefore we cannot change the impact of the disturbance
on the output.

(ii) Case Hy ̸= 0 and Hr = a+kpAHy
kpA

.

yss =
B

a + kpAHy
wo +

kpAHr
a + kpAHy

ro

=
B

a + kpAHy
wo + ro

We can now reduce the impact of the disturbance by choosing a larger value for
the proportional control term kp.

d) Assume that w(t) = 0 and that the gain A undergoes the perturbation A+ δA. Determine
the error in speed due to the gain change for both the feed forward and feedback cases (use
the values for Hr derived in (b)). How should the gains be chosen in this case to reduce
the effects of δA?
Note that the controller gains have to be chosen as a function of A, and not of A+ δA, as
the control engineer does not know that the system gains will change during operation.

(i) Case Hy = 0, Hr = a
Akp

.

yss =
kp(A+ δA)Hr

a
ro

=
kp(A+ δA)

a
Akp

a
ro

=
A+ δA

A
ro

=

(
1 +
δA

A

)
ro

So we see that if there is a 5% change in A, we get a 5% change in output speed.
(ii) Case Hy ̸= 0, Hr = a+kpAHy

kpA
.

yss =
kp(A+ δA)Hr
a + kp(A+ δA)Hy

ro

=
kp(A+ δA)

a+kpAHy
kpA

a + kp(A+ δA)Hy
ro

=
(A+ δA)(a + kpAHy )

A(a + kp(A+ δA)Hy )
ro

=

(
1 +

aδA

A(a + kpA(A+ δA)Hy )

)
ro



So we see that the sensitivity of the steady-state velocity to changes A is

a

a + kpA(A+ δA)Hy

δA

A

which can be made small by choosing the proportional gain kp large.

Prob 3 | The open-loop transfer function of a unity feedback system (i.e., a system whose controller is a
proportional gain equal to one) is

G(s) =
K

s(s + 5)

The desired system response to a step input is specified as having a peak time less than tp = 2sec
and an overshoot less than Mp = 10%.

a) Determine whether both specifications can be met simultaneously by selecting the right
value of K.

Closed-loop transfer function

T (s) =
K

s2 + 5s +K
=

ω2n
s2 + 2ζωns + ω2n

From which we see that

ω2n = K → ωn =
√
K

5 = 2ζωn → ζ =
5

2
√
K

Overshoot of 10% gives:

ζ =
5

2
√
K
≥ −

ln 0.1√
ln 0.12 + π2

= 0.6 → K ≤ 17.36

Peak-time of 2 seconds gives:

Tp =
π

ωn
√
1− ζ2

=
π

√
K
√
1− 25

4K

=
2π√
4K − 25

≤ 2

K ≥
π2 + 25

4
= 8.72

Therefore both conditions can be met if 8.72 ≤ K ≤ 17.36.

b) Sketch the associated region in the s-plane where both specifications are met, and indicate
what root locations are possible for some likely values of K.



We can plot the constraints on the damping ratio and the natural frequency in the
shaded region in the figure below.
The closed-loop poles can be calculated as a function of K by solving the characteristic
equation

s2 + 5s +K = 0 → s =
−5±

√
25− 4K
2

= −2.5±
√
6.25− 4K

=

{
−2.5±

√
6.25−K K ≤ 6.25

−2.5± j
√
K − 6.25 K ≥ 6.25

The resulting curve is shown in red on the figure below, with the portion satisfying
the constraints shown in green (8.72 ≤ K ≤ 17.36).
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c) Find the maximum value for K for the system to oscillate.

The system oscillates if the damping ratio is less than one.

ωn =
√
K

5 = 2ζωn ⇒ 1 ≥ ζ =
2.5

ωn
=
2.5√
K

⇒ K ≥ 6.25


